Several real-world applications could be modeled as Mixed-Integer Non-Linear Programming (MINLP) problems, and some prominent examples include portfolio optimization, remote sensing technology, and so on. Most of the models for these applications are non-convex and always involve some conflicting objectives. The mathematical and heuristic methods have their advantages in solving this category of problems. In this work, we turn to Multi-Objective Evolutionary Algorithms (MOEAs) for finding elegant solutions for such problems. In this framework, we investigate a multi-objective constrained portfolio optimization problem, which can be cast as a classical financial problem and can also be naturally modeled as an MINLP problem. Consequently, we point out one challenge, faced by a direct coding scheme for MOEAs, to this problem. It is that the dependence among variables, like the selection and weights for one same asset, will likely make the search difficult. We thus, propose a Compressed Coding Scheme (CCS), compressing the two dependent variables into one variable to utilize the dependence and thereby meeting this challenge. Subsequently, we carry out a detailed empirical study on two sets of instances. The first part consists of 5 instances from OR-Library, which is solvable for the general mathematical optimizer, like CPLEX, while the remaining 15 instances from NGINX are addressed only by MOEAs. The two benchmarks, involving the number of assets from 31 to 2235, consistently indicate that CCS is not only efficient but also robust for dealing with the constrained multi-objective portfolio optimization.


翻译:几个真实世界应用可以模拟为混合- 内向非内向编程( MINLP) 问题, 一些突出的例子包括组合优化、 遥感技术等等。 这些应用的模型大多是非混凝土, 并且总是涉及一些相互矛盾的目标。 数学和重力方法在解决这类问题方面有其优势。 在这项工作中, 我们转向多目标进化算法( MOEAs), 以找到解决这些问题的优雅的解决方案。 在这个框架内, 我们调查一个多目标的有限组合优化问题, 这个问题可以作为一个典型的财务问题, 也可以自然地模拟成一个MILP问题。 因此, 我们指出一个挑战, 由MOEAs直接编码方案面对的难题。 数学和重心法方法的变量之间的依赖性可能会使搜索变得困难。 因此, 我们建议一个压缩的编码计划( CCSCS), 将两种依赖性的变量压缩成一个变量, 而不是一个典型的组合35, 我们从数学模型中进行一个详细的经验研究。

1
下载
关闭预览

相关内容

【Google】梯度下降,48页ppt
专知会员服务
80+阅读 · 2020年12月5日
一份简单《图神经网络》教程,28页ppt
专知会员服务
123+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
ICML2019:Google和Facebook在推进哪些方向?
中国人工智能学会
5+阅读 · 2019年6月13日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年3月16日
Arxiv
0+阅读 · 2021年3月16日
Arxiv
0+阅读 · 2021年3月12日
Arxiv
0+阅读 · 2021年3月12日
Optimization for deep learning: theory and algorithms
Arxiv
104+阅读 · 2019年12月19日
VIP会员
相关VIP内容
【Google】梯度下降,48页ppt
专知会员服务
80+阅读 · 2020年12月5日
一份简单《图神经网络》教程,28页ppt
专知会员服务
123+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
ICML2019:Google和Facebook在推进哪些方向?
中国人工智能学会
5+阅读 · 2019年6月13日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
相关论文
Top
微信扫码咨询专知VIP会员