In this paper, we develop compositional methods for formally verifying differential privacy for algorithms whose analysis goes beyond the composition theorem. Our methods are based on the observation that differential privacy has deep connections with a generalization of probabilistic couplings, an established mathematical tool for reasoning about stochastic processes. Even when the composition theorem is not helpful, we can often prove privacy by a coupling argument. We demonstrate our methods on two algorithms: the Exponential mechanism and the Above Threshold algorithm, the critical component of the famous Sparse Vector algorithm. We verify these examples in a relational program logic apRHL+, which can construct approximate couplings. This logic extends the existing apRHL logic with more general rules for the Laplace mechanism and the one-sided Laplace mechanism, and new structural rules enabling pointwise reasoning about privacy; all the rules are inspired by the connection with coupling. While our paper is presented from a formal verification perspective, we believe that its main insight is of independent interest for the differential privacy community.


翻译:在本文中,我们为分析超出构成理论的算法开发了正式核实差异隐私的构成方法。我们的方法基于以下观察,即差异隐私与概率结合的概括性有着深厚的联系,这是用于推理随机过程的既定数学工具。即使组成理论没有帮助,我们往往可以通过混合论证来证明隐私。我们在两种算法上展示了我们的方法:公开机制和超临界值算法,这是著名的微粒矢量算法的关键组成部分。我们在一个关联程序逻辑 APRHL+ 中验证了这些例子,这可以构建近似组合。这一逻辑将现有的APRHL 逻辑延伸为拉普尔机制的更一般性的规则和单方拉普尔机制,以及新的结构规则,有利于隐私的引力推理;所有规则都是从与组合的关联中得到启发的。我们的文件是从正式的核查角度提出来,但我们认为它的主要洞察力对于差异隐私群体是独立的。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
123+阅读 · 2020年9月8日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
人工智能 | UAI 2019等国际会议信息4条
Call4Papers
6+阅读 · 2019年1月14日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
人工智能 | 国际会议信息6条
Call4Papers
4+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
7+阅读 · 2020年6月29日
Arxiv
7+阅读 · 2019年6月20日
Arxiv
4+阅读 · 2018年1月15日
Arxiv
6+阅读 · 2017年7月17日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
123+阅读 · 2020年9月8日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
人工智能 | UAI 2019等国际会议信息4条
Call4Papers
6+阅读 · 2019年1月14日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
人工智能 | 国际会议信息6条
Call4Papers
4+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员