We introduce a fixed point iteration process built on optimization of a linear function over a compact domain. We prove the process always converges to a fixed point and explore the set of fixed points in various convex sets. In particular, we consider elliptopes and derive an algebraic characterization of their fixed points. We show that the attractive fixed points of an elliptope are exactly its vertices. Finally, we discuss how fixed point iteration can be used for rounding the solution of a semidefinite programming relaxation.
翻译:我们引入一个固定的点迭代程序, 其基础是将线性函数优化到一个紧凑的域。 我们证明这一过程总是会达到一个固定点, 并探索各锥形组的固定点。 特别是, 我们考虑椭圆顶, 并得出其固定点的代数特征。 我们显示, 椭圆的有吸引力的固定点正是它的顶点。 最后, 我们讨论如何使用固定点迭代来四舍五入半定式程序松动的解决方案 。