Existing studies on salient object detection (SOD) focus on extracting distinct objects with edge information and aggregating multi-level features to improve SOD performance. To achieve satisfactory performance, the methods employ refined edge information and low multi-level discrepancy. However, both performance gain and computational efficiency cannot be attained, which has motivated us to study the inefficiencies in existing encoder-decoder structures to avoid this trade-off. We propose TRACER, which detects salient objects with explicit edges by incorporating attention guided tracing modules. We employ a masked edge attention module at the end of the first encoder using a fast Fourier transform to propagate the refined edge information to the downstream feature extraction. In the multi-level aggregation phase, the union attention module identifies the complementary channel and important spatial information. To improve the decoder performance and computational efficiency, we minimize the decoder block usage with object attention module. This module extracts undetected objects and edge information from refined channels and spatial representations. Subsequently, we propose an adaptive pixel intensity loss function to deal with the relatively important pixels unlike conventional loss functions which treat all pixels equally. A comparison with 13 existing methods reveals that TRACER achieves state-of-the-art performance on five benchmark datasets. We have released TRACER at https://github.com/Karel911/TRACER.
翻译:关于突出对象探测的现有研究(SOD)侧重于提取带有边缘信息的有区别对象,并汇总多级特性以改善SOD的性能。为了取得令人满意的业绩,这些方法采用精细的边缘信息和低多级差异。但是,绩效增益和计算效率都无法实现,这促使我们研究现有的编码器脱co器结构中的低效率,以避免这种权衡。我们提议TRACER,该模块通过纳入引人注意的跟踪模块来探测明显边缘的突出对象。我们在第一个编码器的末尾使用一个遮蔽色分级注意模块,使用快速的Fourier变换,将精细的边缘信息传播到下游特性提取中。在多级汇总阶段,工会关注模块确定了补充渠道和重要的空间信息。为了提高脱coder-decoder结构的效能和计算效率,我们尽可能降低脱coder 区块的使用效率,从而避免这种偏差。我们提议通过精细的跟踪模块和空间描述,我们提出一个适应性象焦度强度损失功能,以处理相对重要的象素的象素,而不是常规损失功能,后者处理所有的Pix91/TRA-TRA平等处理所有的TRA。在TRA/TRAC13号基准中,比较现有数据显示现有方法。