A novel Identity-Free conditional Generative Adversarial Network (IF-GAN) was proposed for Facial Expression Recognition (FER) to explicitly reduce high inter-subject variations caused by identity-related facial attributes, e.g., age, race, and gender. As part of an end-to-end system, a cGAN was designed to transform a given input facial expression image to an "average" identity face with the same expression as the input. Then, identity-free FER is possible since the generated images have the same synthetic "average" identity and differ only in their displayed expressions. Experiments on four facial expression datasets, one with spontaneous expressions, show that IF-GAN outperforms the baseline CNN and achieves state-of-the-art performance for FER.
翻译:为了明确减少与身份有关的面部特征(如年龄、种族和性别)造成的高跨质差异,提议为面部表达识别(IF-GAN)建立一个新型的无身份有条件生成反转网络(IF-GAN),作为端对端系统的一部分,设计了一个CGAN,将特定输入面部表达图像转换为“平均”身份,与输入具有相同表达式。然后,可以实现无身份FER,因为生成的图像具有相同的合成“平均”身份,只在展示的表达式上有所不同。对四个面部表达数据集的实验,一个带有自发表达式的实验显示,IF-GAN超越了基线有线电视新闻网,并实现了FER的最新性能。