The paper describes our proposed methodology for the seven basic expression classification track of Affective Behavior Analysis in-the-wild (ABAW) Competition 2021. In this task, facial expression recognition (FER) methods aim to classify the correct expression category from a diverse background, but there are several challenges. First, to adapt the model to in-the-wild scenarios, we use the knowledge from pre-trained large-scale face recognition data. Second, we propose an ensemble model with a convolution neural network (CNN), a CNN-recurrent neural network (CNN-RNN), and a CNN-Transformer (CNN-Transformer), to incorporate both spatial and temporal information. Our ensemble model achieved F1 as 0.4133, accuracy as 0.6216 and final metric as 0.4821 on the validation set.
翻译:本文介绍了我们为2021年在线ABAW竞争(ABAW)中7个基本表达分类轨道拟议的方法。在这一任务中,面部表达识别方法旨在从不同背景对正确表达类别进行分类,但存在若干挑战。首先,为了使模型适应于各种情况,我们利用预先培训的大型脸部识别数据提供的知识。第二,我们提出了一个组合模型,其中包括一个演进神经网络(CNN),一个CNN-经常性神经网络(CNN-RNNN)和一个CNN-Transexter(CNN-Transex),以纳入空间和时间信息。我们的组合模型达到F1,为0.4133,准确度为0.6216,最后指标为0.4821。