For the 2D incompressible Navier-Stokes equations, with given hypothetical non smooth data at time $T > 0 $that may not correspond to an actual solution at time $T$, a previously developed stabilized backward marching explicit leapfrog finite difference scheme is applied to these data, to find initial values at time $t = 0$ that can evolve into useful approximations to the given data at time $T$. That may not always be possible. Similar data assimilation problems, involving other dissipative systems, are of considerable interest in the geophysical sciences, and are commonly solved using computationally intensive methods based on neural networks informed by machine learning. Successful solution of ill-posed time-reversed Navier-Stokes equations is limited by uncertainty estimates, based on logarithmic convexity, that place limits on the value of $T > 0$. In computational experiments involving satellite images of hurricanes and other meteorological phenomena, the present method is shown to produce successful solutions at values of $T > 0$, that are several orders of magnitude larger than would be expected, based on the best-known uncertainty estimates. However, unsuccessful examples are also given. The present self-contained paper outlines the stabilizing technique, based on applying a compensating smoothing operator at each time step, and stresses the important differences between data assimilation, and backward recovery, in ill-posed time reversed problems for dissipative equations. While theorems are stated without proof, the reader is referred to a previous paper, on Navier-Stokes backward recovery, where these proofs can be found.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
16+阅读 · 2022年5月17日
Arxiv
18+阅读 · 2021年3月16日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员