In certain situations, Neural Networks (NN) are trained upon data that obey underlying physical symmetries. However, it is not guaranteed that NNs will obey the underlying symmetry unless embedded in the network structure. In this work, we explore a special kind of symmetry where functions are invariant with respect to involutory linear/affine transformations up to parity $p=\pm 1$. We develop mathematical theorems and propose NN architectures that ensure invariance and universal approximation properties. Numerical experiments indicate that the proposed models outperform baseline networks while respecting the imposed symmetry. An adaption of our technique to convolutional NN classification tasks for datasets with inherent horizontal/vertical reflection symmetry has also been proposed.
翻译:在某些情况下,神经网络(NN)在遵守基本物理对称的数据方面受过培训,但不能保证NN将遵守基本对称,除非嵌入网络结构。在这项工作中,我们探索一种特殊的对称方法,其功能在直到等价的不挥发性线性/肾脏变异方面是不变的。我们开发数学理论,并提议NN结构,以确保不变化和通用近似性。数字实验表明,拟议的模型在尊重强制对称的同时,将超越基准网络。还提议了我们的技术对带有固有的水平/垂直反射对称的数据集进行革命性NNNN分类任务。