Inspired by two basic mechanisms in animal visual systems, we introduce a feature transform technique that imposes invariance properties in the training of deep neural networks. The resulting algorithm requires less parameter tuning, trains well with an initial learning rate 1.0, and easily generalizes to different tasks. We enforce scale invariance with local statistics in the data to align similar samples at diverse scales. To accelerate convergence, we enforce a GL(n)-invariance property with global statistics extracted from a batch such that the gradient descent solution should remain invariant under basis change. Profiling analysis shows our proposed modifications takes 5% of the computations of the underlying convolution layer. Tested on convolutional networks and transformer networks, our proposed technique requires fewer iterations to train, surpasses all baselines by a large margin, seamlessly works on both small and large batch size training, and applies to different computer vision and language tasks.
翻译:在动物视觉系统的两种基本机制的启发下,我们引入了一种特性变换技术,在深神经网络的培训中具有不变化的特性。由此产生的算法需要的参数调整较少,对初始学习率1.0进行良好培训,并容易地概括到不同的任务中。我们在数据中采用与本地统计的尺度变异,以便在不同尺度上对相似的样本进行匹配。为了加速趋同,我们采用了一种GL(n)变异特性,从一组中提取的全球统计数据使梯度下降溶液在基础变化中保持不变。分析表明,我们提议的修改需要5%的参数调整,而计算基本变异层的计算则需要5%。在卷动网络和变异器网络上测试,我们提议的技术需要较少的迭代来培训,大大超过所有基线,在大小的训练中进行无缝合,并适用于不同的计算机视野和语言任务。