Intersection graphs are well-studied in the area of graph algorithms. Some intersection graph classes are known to have algorithms enumerating all unlabeled graphs by reverse search. Since these algorithms output graphs one by one and the numbers of graphs in these classes are vast, they work only for a small number of vertices. Binary decision diagrams (BDDs) are compact data structures for various types of data and useful for solving optimization and enumeration problems. This study proposes enumeration algorithms for five intersection graph classes, which admit $\mathrm{O}(n)$-bit string representations for their member graphs. Our algorithm for each class enumerates all unlabeled graphs with $n$ vertices over BDDs representing the binary strings in time polynomial in $n$. Moreover, our algorithms are extended to enumerate those with constraints on the maximum (bi)clique size and/or the number of edges.
翻译:剖面图在图形算法领域研究得非常透彻。 一些交叉图类已知有算法, 通过反向搜索将所有未贴标签的图表都列在一起。 由于这些算法图逐个列出所有未贴标签的图表, 这些类别中的图表数量巨大, 它们只能用于少量的脊椎。 二进制决定图( BDDs) 是各种类型数据的紧凑数据结构, 可用于解决优化和查点问题 。 本研究为五个交叉图类提议计算算法, 5个交叉图类为成员图提供了$\ mathrm{O}( n)$- bit 字串表示法 。 我们每个类的算法以美元计所有未贴标签的图表, 以美元横跨 BDDs 代表时数的双数字符串。 此外, 我们的算法将扩展为在最大( bi) 分类大小和( 或) 边缘数上受限制的数据。