Hypergraphs are generalisation of graphs in which a hyperedge can connect any number of vertices. It can describe n-ary relationships and high-order information among entities compared to conventional graphs. In this paper, we study the fundamental problem of subhypergraph matching in hypergraphs. Existing methods directly extend subgraph matching algorithms to the case of hypergraphs. However, this approach delays hyperedge verification and underutilises the high-order information in hypergraphs, which leads to large search space and high enumeration cost. Furthermore, with the growing size of hypergraphs, it is becoming hard to compute subhypergraph matching sequentially. Thus, we propose an efficient and parallel subhypergraph matching system, HGMatch, to handle subhypergraph matching in massive hypergraphs. We proposes a novel match-by-hyperedge framework to utilise high-order information in hypergraphs and uses set operations for efficient candidates generation. Moreover, we develop an optimised parallel execution engine in HGMatch based on the dataflow model, which features a task-based scheduler and fine-grained dynamic work stealing to achieve bounded memory execution and better load balancing. Experimental evaluation on 10 real-world datasets shows that HGMatch outperforms the extended version of the state-of-the-art subgraph matching algorithms (CFL, DAF, CECI and RapidMatch) by orders of magnitude when using a single thread, and achieves almost linear scalability when the number of threads increases.


翻译:超格是图表的概括化, 高端可以连接任何数量的脊椎。 它可以描述实体与常规图形相比的 nary 关系和高端信息 。 在本文中, 我们研究高压下子血压匹配的根本问题 。 现有方法将子血压匹配算法直接扩展至高压。 但是, 这种方法会延迟高端核查, 并低估高端高端信息, 从而导致巨大的搜索空间和高查点成本 。 此外, 随着高端图的不断增长, 很难按顺序对各实体进行子血压匹配 。 因此, 我们提出一个高效和平行的子血压匹配系统( HGMatch ), 以大型高压匹配法处理子血压匹配算法。 我们提出一个新的按高端校准框架, 使用高端校准的操作来高效的候选人生成。 此外, 我们根据数据流模型在HGMatch 开发一个优化的平行执行引擎, 以基于基于基于任务表和精确的直线匹配的直径匹配比 。 因此, 将快速的直径直径直径匹配的直径直线匹配系统匹配系统匹配系统 运行 。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
代码推荐 | 轻松实现各种图匹配 Graph matching.
图与推荐
2+阅读 · 2022年10月22日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
20+阅读 · 2021年9月22日
Arxiv
19+阅读 · 2021年2月4日
Arxiv
10+阅读 · 2019年2月19日
Arxiv
10+阅读 · 2017年12月29日
VIP会员
相关VIP内容
相关资讯
代码推荐 | 轻松实现各种图匹配 Graph matching.
图与推荐
2+阅读 · 2022年10月22日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员