For a set system $(V,{\mathcal C}\subseteq 2^V)$, we call a subset $C\in{\mathcal C}$ a component. A nonempty subset $Y\subseteq C$ is a minimal removable set (MRS) of $C$ if $C\setminus Y\in{\mathcal C}$ and no proper nonempty subset $Z\subsetneq Y$ satisfies $C\setminus Z\in{\mathcal C}$. In this paper, we consider the problem of enumerating all components in a set system such that, for every two components $C,C'\in{\mathcal C}$ with $C'\subsetneq C$, every MRS $X$ of $C$ satisfies either $X\subseteq C'$ or $X\cap C'=\emptyset$. We provide a partition-based algorithm for this problem, which yields the first linear delay algorithms to enumerate all 2-edge-connected induced subgraphs, and to enumerate all 2-vertex-connected induced subgraphs.
翻译:对于设定的系统$( V, {mathcal C ⁇ subseteq 2 ⁇ V) 美元, 我们将一个子集 $C\ in\ mathcal C} 调用为元。 一个非纯子集 $Y\ subseteq C$ 是最小可折现的 $C( MRS) 美元, 如果$C\ setminus Y\ in\ mathcal C} 美元, 而没有适当的非纯子集 ${subsetneq Y$ 满足 $C\ subsetenq $ C' 或$X\ c' {cap C} 。 在本文中, 我们考虑了一个问题基于分区的算法, 由此产生了第一个线性延迟算法, 来计算所有两端连接的子图, 并列出所有两端连接的子图。