One of the main challenges in electroencephalogram (EEG) based brain-computer interface (BCI) systems is learning the subject/session invariant features to classify cognitive activities within an end-to-end discriminative setting. We propose a novel end-to-end machine learning pipeline, EEG-NeXt, which facilitates transfer learning by: i) aligning the EEG trials from different subjects in the Euclidean-space, ii) tailoring the techniques of deep learning for the scalograms of EEG signals to capture better frequency localization for low-frequency, longer-duration events, and iii) utilizing pretrained ConvNeXt (a modernized ResNet architecture which supersedes state-of-the-art (SOTA) image classification models) as the backbone network via adaptive finetuning. On publicly available datasets (Physionet Sleep Cassette and BNCI2014001) we benchmark our method against SOTA via cross-subject validation and demonstrate improved accuracy in cognitive activity classification along with better generalizability across cohorts.
翻译:以脑-计算机界面为基础的电子脑图(EEG)系统面临的主要挑战之一是学习在端到端歧视环境下对认知活动进行分类的学科/会场差异性特征,我们提议建立一个新型的端到端机器学习管道EEEG-NeXt,通过适应性微调促进转移学习,其途径是:一)使Euclidean-space不同学科的EEEG试验与EEG信号标度图的深度学习技术保持一致;二)为EEEG信号的标度图调整深层次学习技术,以捕捉低频、长期事件更频繁的本地化;三)利用预先培训的ConNeXt(现代化的ResNet结构,取代了最先进的(SOTA)图像分类模型)作为主干网络,通过适应性调整,将EUCOTA(Phisionet睡眠卡塞特和BNCII2014/01)作为我们根据SOTA测量方法的跨子验证基准,并显示认知活动分类的准确性,同时提高各组群群群的通用性。