This paper presents an algorithmic method that, given a positive integer $j$, generates the $j$-th convergence stair containing all natural numbers from where the Collatz conjecture holds by exactly $j$ applications of the Collatz function. To this end, we present a novel formulation of the Collatz conjecture as a concurrent program, and provide the general case specification of the $j$-th convergence stair for any $j > 0$. The proposed specifications provide a layered and linearized orientation of Collatz numbers organized in an infinite set of infinite binary trees. To the best of our knowledge, this is the first time that such a general specification is provided, which can have significant applications in analyzing and testing the behaviors of complex non-linear systems. We have implemented this method as a software tool that generates the Collatz numbers of individual stairs. We also show that starting from any value in any convergence stair the conjecture holds. However, to prove the conjecture, one has to show that every natural number will appear in some stair; i.e., the union of all stairs is equal to the set of natural numbers, which remains an open problem.
翻译:暂无翻译