Extreme multi-label classification (XML) is becoming increasingly relevant in the era of big data. Yet, there is no method for effectively generating stratified partitions of XML datasets. Instead, researchers typically rely on provided test-train splits that, 1) aren't always representative of the entire dataset, and 2) are missing many of the labels. This can lead to poor generalization ability and unreliable performance estimates, as has been established in the binary and multi-class settings. As such, this paper presents a new and simple algorithm that can efficiently generate stratified partitions of XML datasets with millions of unique labels. We also examine the label distributions of prevailing benchmark splits, and investigate the issues that arise from using unrepresentative subsets of data for model development. The results highlight the difficulty of stratifying XML data, and demonstrate the importance of using stratified partitions for training and evaluation.


翻译:在大数据时代,极端多标签分类(XML)正在变得日益重要。然而,没有有效生成XML数据集分层分割的方法。相反,研究人员通常依赖提供的测试-培训分解,其中1(1)并非总能代表整个数据集,2)缺少许多标签。这可能导致二进制和多级设置中确立的概括化能力差和性能估计不可靠。因此,本文件提出了一个新的、简单的算法,可以有效地生成具有数百万个独特标签的XML数据集分层分割。我们还检查了当前基准分解的标签分布情况,并调查了在模型开发中使用不具有代表性的一组数据所产生的问题。结果突出表明了压缩XML数据的困难,并展示了在培训和评估中使用分层分割分割分区的重要性。

0
下载
关闭预览

相关内容

【AAAI2021】对比聚类,Contrastive Clustering
专知会员服务
78+阅读 · 2021年1月30日
多标签学习的新趋势(2020 Survey)
专知会员服务
42+阅读 · 2020年12月6日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
96+阅读 · 2020年5月31日
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
读书报告 | Deep Learning for Extreme Multi-label Text Classification
科技创新与创业
48+阅读 · 2018年1月10日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
13+阅读 · 2021年3月29日
Does Data Augmentation Benefit from Split BatchNorms
Arxiv
3+阅读 · 2020年10月15日
Arxiv
7+阅读 · 2020年3月1日
VIP会员
相关资讯
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
读书报告 | Deep Learning for Extreme Multi-label Text Classification
科技创新与创业
48+阅读 · 2018年1月10日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员