In this paper, we explore neural network-based strategies for performing symbol detection in a MIMO-OFDM system. Building on a reservoir computing (RC)-based approach towards symbol detection, we introduce a symmetric and decomposed binary decision neural network to take advantage of the structure knowledge inherent in the MIMO-OFDM system. To be specific, the binary decision neural network is added in the frequency domain utilizing the knowledge of the constellation. We show that the introduced symmetric neural network can decompose the original $M$-ary detection problem into a series of binary classification tasks, thus significantly reducing the neural network detector complexity while offering good generalization performance with limited training overhead. Numerical evaluations demonstrate that the introduced hybrid RC-binary decision detection framework performs close to maximum likelihood model-based symbol detection methods in terms of symbol error rate in the low SNR regime with imperfect channel state information (CSI).
翻译:在本文中,我们探索以神经网络为基础的战略,以便在MIMO-OFDM系统中进行符号检测。在基于储油层计算(RC)的符号检测方法的基础上,我们引入了一种对称和分解的二进制决定神经网络,以利用IMO-OFDM系统固有的结构知识。具体地说,二进制决定神经网络在频率域中添加了利用星座知识的双进制决定神经网络。我们表明,引入的对称神经网络检测问题可以将原始的$M($)的检测问题分解成一系列二进制分类任务,从而大大减少神经网络检测的复杂程度,同时在有限的培训间接费用下提供良好的一般化性表现。定量评估表明,引入的混合的RC-BIN决定检测框架在使用不完善的频道状态信息的低SNR系统中的符号误率方面,在基于模型的符号检测率方面有着接近最大的可能性。