We study a randomized quadrature algorithm to approximate the integral of periodic functions defined over the high-dimensional unit cube. Recent work by Kritzer, Kuo, Nuyens and Ullrich (2019) shows that rank-1 lattice rules with a randomly chosen number of points and good generating vector achieve almost the optimal order of the randomized error in weighted Korobov spaces, and moreover, that the error is bounded independently of the dimension if the weight parameters satisfy the summability condition $\sum_{j=1}^{\infty}\gamma_j^{1/\alpha}<\infty$. The argument is based on the existence result that at least half of the possible generating vectors yield almost the optimal order of the worst-case error in the same function spaces. In this paper we provide a component-by-component construction algorithm of such randomized rank-1 lattice rules, without any need to check whether the constructed generating vectors satisfy a desired worst-case error bound. Similarly to the above-mentioned work, we prove that our algorithm achieves almost the optimal order of the randomized error and that the error bound is independent of the dimension if the same condition $\sum_{j=1}^{\infty}\gamma_j^{1/\alpha}<\infty$ holds. We also provide analogous results for tent-transformed lattice rules for weighted half-period cosine spaces and for polynomial lattice rules in weighted Walsh spaces, respectively.
翻译:我们研究一个随机的二次方算算算法,以接近高维单位立方体上界定的定期函数的完整。Kritzer、Kuo、Nuyens和Ullrich(2019年)最近由Kritzer、Kuo、Nuyens和Ullrich(2019年)开展的工作表明,级别-1拉特点规则与随机选择的点数和良好生成矢量几乎达到加权Korobov 空间随机误差的最优化顺序,此外,如果重量参数满足了高维单位立方立方立方立方立方立方立方的相容性条件,那么如果重量参数参数满足了一个理想的最坏错误($sum_sum mamamamamamamamamamama_j_jalmamamamamamamama_j_jal_alalalalalalalal_ral-ral-ralbleum_r_br_br_____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________