We study a randomized quadrature algorithm to approximate the integral of periodic functions defined over the high-dimensional unit cube. Recent work by Kritzer, Kuo, Nuyens and Ullrich (2019) shows that rank-1 lattice rules with a randomly chosen number of points and good generating vector achieve almost the optimal order of the randomized error in weighted Korobov spaces, and moreover, that the error is bounded independently of the dimension if the weight parameters satisfy the summability condition $\sum_{j=1}^{\infty}\gamma_j^{1/\alpha}<\infty$. The argument is based on the existence result that at least half of the possible generating vectors yield almost the optimal order of the worst-case error in the same function spaces. In this paper we provide a component-by-component construction algorithm of such randomized rank-1 lattice rules, without any need to check whether the constructed generating vectors satisfy a desired worst-case error bound. Similarly to the above-mentioned work, we prove that our algorithm achieves almost the optimal order of the randomized error and that the error bound is independent of the dimension if the same condition $\sum_{j=1}^{\infty}\gamma_j^{1/\alpha}<\infty$ holds. We also provide analogous results for tent-transformed lattice rules for weighted half-period cosine spaces and for polynomial lattice rules in weighted Walsh spaces, respectively.


翻译:我们研究一个随机的二次方算算算法,以接近高维单位立方体上界定的定期函数的完整。Kritzer、Kuo、Nuyens和Ullrich(2019年)最近由Kritzer、Kuo、Nuyens和Ullrich(2019年)开展的工作表明,级别-1拉特点规则与随机选择的点数和良好生成矢量几乎达到加权Korobov 空间随机误差的最优化顺序,此外,如果重量参数满足了高维单位立方立方立方立方立方立方立方的相容性条件,那么如果重量参数参数满足了一个理想的最坏错误($sum_sum mamamamamamamamamamama_j_jalmamamamamamamama_j_jal_alalalalalalalal_ral-ral-ralbleum_r_br_br_____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

0
下载
关闭预览

相关内容

专知会员服务
76+阅读 · 2021年3月16日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
revelation of MONet
CreateAMind
5+阅读 · 2019年6月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
lightgbm algorithm case of kaggle(上)
R语言中文社区
8+阅读 · 2018年3月20日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年11月11日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关资讯
revelation of MONet
CreateAMind
5+阅读 · 2019年6月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
lightgbm algorithm case of kaggle(上)
R语言中文社区
8+阅读 · 2018年3月20日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员