This paper presents some new results on maximum likelihood of incomplete data. Finite sample properties of conditional observed information matrices are established. In particular, they possess the same Loewner partial ordering properties as the expected information matrices do. In its new form, the observed Fisher information (OFI) simplifies conditional expectation of outer product of the complete-data score function appearing in the Louis (1982) general matrix formula. It verifies positive definiteness and consistency to the expected Fisher information as the sample size increases. Furthermore, it shows a resulting information loss presented in the incomplete data. For this reason, the OFI may not be the right (consistent and efficient) estimator to derive the standard error (SE) of maximum likelihood estimates (MLE) for incomplete data. A sandwich estimator of covariance matrix is developed to provide consistent and efficient estimates of SE. The proposed sandwich estimator coincides with the Huber sandwich estimator for model misspecification under complete data (Huber, 1967; Freedman, 2006; Little and Rubin, 2020). However, in contrast to the latter, the new estimator does not involve OFI which notably gives an appealing feature for application. Recursive algorithms for the MLE, the observed information and the sandwich estimator are presented. Application to parameter estimation of a regime switching conditional Markov jump process is considered to verify the results. The recursive equations for the inverse OFI generalizes the algorithm of Hero and Fessler (1994). The simulation study confirms that the MLEs are accurate and consistent having asymptotic normality. The sandwich estimator produces standard error of the MLE close to their analytic values compared to those overestimated by the OFI.
翻译:本文介绍了关于数据不完整最大可能性的一些新结果。 设定了有条件观察的信息矩阵的精度样本属性。 特别是, 它们拥有与预期信息矩阵相同的Loewner部分定序属性。 在新形式中, 观察到的Fisher信息( OFI) 简化了路易( 1982) 通用矩阵公式中显示的完整数据评分函数外产的有条件期望。 随着样本规模的增加, 检测了预期的Fisher信息的确定性和一致性。 此外, 它显示了不完整数据中显示的信息损失。 出于这一原因, OFI 可能不是得出数据不完整数据最大概率估计的标准错误( SE) 的正确( 一致和高效) 估计值。 观察到的Fisherferish信息( Officeserminations) 的三明治估计值与根据完整数据( Heber, 1967年; Freedman, 2006年; Little and Rubin, 2020) 数据中出现的信息损失。 然而, 与后者相比, 新的估计值的精确度估算值( Servictor) 的计算结果与Serviewalalalalalalalalalalalalalal 应用结果并不。 的变校正的计算结果, 显示的Servicolentalalalalalalalalalalalalalalalal