Most weakly supervised semantic segmentation (WSSS) methods follow the pipeline that generates pseudo-masks initially and trains the segmentation model with the pseudo-masks in fully supervised manner after. However, we find some matters related to the pseudo-masks, including high quality pseudo-masks generation from class activation maps (CAMs), and training with noisy pseudo-mask supervision. For these matters, we propose the following designs to push the performance to new state-of-art: (i) Coefficient of Variation Smoothing to smooth the CAMs adaptively; (ii) Proportional Pseudo-mask Generation to project the expanded CAMs to pseudo-mask based on a new metric indicating the importance of each class on each location, instead of the scores trained from binary classifiers. (iii) Pretended Under-Fitting strategy to suppress the influence of noise in pseudo-mask; (iv) Cyclic Pseudo-mask to boost the pseudo-masks during training of fully supervised semantic segmentation (FSSS). Experiments based on our methods achieve new state-of-art results on two changeling weakly supervised semantic segmentation datasets, pushing the mIoU to 70.0% and 40.2% on PAS-CAL VOC 2012 and MS COCO 2014 respectively. Codes including segmentation framework are released at https://github.com/Eli-YiLi/PMM
翻译:监管最薄弱的语义分割法(WSSS) 遵循最初生成假质的管道方法, 并随后以充分监管的方式对假质进行配制模型培训。 然而, 我们发现一些与假质有关的问题, 包括从课堂激活地图( CAMs) 中生成高质量的假质质, 以及用噪音假面层监管培训。 对于这些事项, 我们建议采用以下设计, 将性能推向新工艺阶段:(i) 挥发性能的系数, 以适应的方式平滑 CAMs;(ii) 比例化的 Pseudo-mask 生成将扩大的 CAMs 投射到假面层模型中, 以新的指标显示每个地点每个班级的重要性, 而不是从二进制分类师那里培训的分数 。 (iii) 模拟下调战略, 以抑制伪质化的噪音影响;(iv) Cyclic Pseeudodo-mask 在全面监管的语义分割(FSS) 中, 以我们的方法为基础将扩大的 CAM- 包括新的州- lusional- scarenalation lais) 在2012年的Sal- salation上分别实现新的Sal- bal- salbus- sal- salbus