Truncated conditional expectation functions are objects of interest in a wide range of economic applications, including income inequality measurement, financial risk management, and impact evaluation. They typically involve truncating the outcome variable above or below certain quantiles of its conditional distribution. In this paper, based on local linear methods, a novel, two-stage, nonparametric estimator of such functions is proposed. In this estimation problem, the conditional quantile function is a nuisance parameter that has to be estimated in the first stage. The proposed estimator is insensitive to the first-stage estimation error owing to the use of a Neyman-orthogonal moment in the second stage. This construction ensures that inference methods developed for the standard nonparametric regression can be readily adapted to conduct inference on truncated conditional expectations. As an extension, estimation with an estimated truncation quantile level is considered. The proposed estimator is applied in two empirical settings: sharp regression discontinuity designs with a manipulated running variable and randomized experiments with sample selection.


翻译:有条件预期功能是一系列广泛的经济应用中感兴趣的对象,包括收入不平等计量、金融风险管理和影响评价,通常涉及缩短其有条件分布的某些四分位数以上或以下的结果变量。在本文中,根据当地线性方法,提出了这种功能的新颖的、两阶段的非参数性估计值。在这一估算问题中,有条件的量化功能是一个在第一阶段必须估算的干扰参数。提议的估算器对第一阶段估算错误不敏感,原因是在第二阶段使用了内曼-orthogoinal时刻。这一构建确保为标准非参数回归而开发的推论方法可以很容易地调整,以便根据临时有条件期望进行推论。作为扩展,将考虑估计的变速孔度水平估算值。拟议的估算器应用于两个经验性环境:精确回归不连续状态设计,在抽样选择中操纵进行可变和随机实验。

0
下载
关闭预览

相关内容

专知会员服务
41+阅读 · 2021年4月2日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
4+阅读 · 2018年3月14日
Arxiv
4+阅读 · 2018年1月15日
VIP会员
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员