This paper deals with a projection least square estimator of the function $J_0$ computed from multiple independent observations on $[0,T]$ of the process $Z$ defined by $dZ_t = J_0(t)d\langle M\rangle_t + dM_t$, where $M$ is a centered, continuous and square integrable martingale vanishing at $0$. Risk bounds are established on this estimator and on an associated adaptive estimator. An appropriate transformation allows to rewrite the differential equation $dX_t = V(X_t)(b_0(t)dt +\sigma(t)dB_t)$, where $B$ is a fractional Brownian motion of Hurst parameter $H\in (1/2,1)$, as a model of the previous type. So, the second part of the paper deals with risk bounds on a nonparametric estimator of $b_0$ derived from the results on the projection least square estimator of $J_0$. In particular, our results apply to the estimation of the drift function in a non-autonomous extension of the fractional Black-Scholes model introduced in Hu et al. (2003).


翻译:本文涉及一个对函数的预测最小平方估计值 $0 J_ 0美元,该函数的预测最小估计值来自对 $[0,T]$的多重独立观察,该函数由美元=J_0(t)d\langle Mrcle_t+dM_t_t$t美元定义,美元为美元是一个中心、连续和可平方分辨的马丁格列以0美元消失的模型。该估计值和相关的适应估计值设定了风险界限。适当的转换允许重写对 $X_t=V(X_t)(b_0)(t)t = ⁇ sgmam(t)dB_t美元定义的差方程方程方程,其中美元是赫斯特参数($H) / in (1.2,1美元) 的分数的布朗运动。因此,该文件的第二部分涉及对一个非准数估计值为$b_0美元的风险约束值,这是根据对 $_0美元(X_t) (b_0) (t) a dd) t) t = {s\ disgraphalisalisimal 函数的预测值的最小估测算结果。具体应用了我们推算结果。

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
语音顶级会议Interspeech2018接受论文列表!
专知
6+阅读 · 2018年6月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年12月31日
VIP会员
相关资讯
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
语音顶级会议Interspeech2018接受论文列表!
专知
6+阅读 · 2018年6月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员