In this paper, we study the information theoretic bounds for exact recovery in sub-hypergraph models for community detection. We define a general model called the $m-$uniform sub-hypergraph stochastic block model ($m-$ShSBM). Under the $m-$ShSBM, we use Fano's inequality to identify the region of model parameters where any algorithm fails to exactly recover the planted communities with a large probability. We also identify the region where a Maximum Likelihood Estimation (MLE) algorithm succeeds to exactly recover the communities with high probability. Our bounds are tight and pertain to the community detection problems in various models such as the planted hypergraph stochastic block model, the planted densest sub-hypergraph model, and the planted multipartite hypergraph model.
翻译:在本文中,我们研究了用于社区检测的次高光谱模型中准确恢复的信息理论界限。我们定义了一个称为美元-美元统一次高光谱区块模型(m-$ShSBM)的一般模型。在美元-美元ShSBM中,我们利用法诺的不平等性来确定模型参数区域,其中任何算法都无法完全恢复有很大可能性的被种植社区。我们还确定了最接近估计算法成功完全恢复高概率社区的区域。我们的界限很紧,与各种模型中的社区探测问题有关,例如种植高光谱区块模型、种植密度最稠密的子高光谱模型和种植多部分高光谱模型。