Multi-column dependencies in relational databases come associated with two different computational tasks. The detection problem is to decide whether a dependency of a certain type and size holds in a given database, the discovery problem asks to enumerate all valid dependencies of that type. We settle the complexity of both of these problems for unique column combinations (UCCs), functional dependencies (FDs), and inclusion dependencies (INDs). We show that the detection of UCCs and FDs is W[2]-complete when parameterized by the solution size. The discovery of inclusion-wise minimal UCCs is proven to be equivalent under parsimonious reductions to the transversal hypergraph problem of enumerating the minimal hitting sets of a hypergraph. The discovery of FDs is equivalent to the simultaneous enumeration of the hitting sets of multiple input hypergraphs. We further identify the detection of INDs as one of the first natural W[3]-complete problems. The discovery of maximal INDs is shown to be equivalent to enumerating the maximal satisfying assignments of antimonotone, 3-normalized Boolean formulas.
翻译:与两个不同的计算任务相关的关系数据库的多重依赖性。 检测的问题是确定特定类型和大小的某个特定类型的依赖性是否在特定数据库中存在, 发现问题要求列出该类型的所有有效依赖性。 我们解决了独立柱组合(UCCs)、功能依赖性(FDs)和包容依赖性(INDs)这两个问题的复杂性。 我们发现, 在按照解决方案大小参数参数进行参数测量时,发现UCCs和FDs是W[ 2] 完整的。 发现包容- 最低 UCCs 证明, 与计算高光谱中最小击数的跨轴高射度问题相同。 发现FDs相当于同时计数多个输入高光谱的击击数。 我们还进一步确定, 识别INDs是第一个自然W[ 3] 完整的问题之一。 发现的最大INDs 显示, 与量化反monoone 3- 3 常规BOLE 公式的最大匹配任务相等。