Inference on vertex-aligned graphs is of wide theoretical and practical importance.There are, however, few flexible and tractable statistical models for correlated graphs, and even fewer comprehensive approaches to parametric inference on data arising from such graphs. In this paper, we consider the correlated Bernoulli random graph model (allowing different Bernoulli coefficients and edge correlations for different pairs of vertices), and we introduce a new variance-reducing technique -- called \emph{balancing} -- that can refine estimators for model parameters. Specifically, we construct a disagreement statistic and show that it is complete and sufficient; balancing can be interpreted as Rao-Blackwellization with this disagreement statistic. We show that for unbiased estimators of functions of model parameters, balancing generates uniformly minimum variance unbiased estimators (UMVUEs). However, even when unbiased estimators for model parameters do {\em not} exist -- which, as we prove, is the case with both the heterogeneity correlation and the total correlation parameters -- balancing is still useful, and lowers mean squared error. In particular, we demonstrate how balancing can improve the efficiency of the alignment strength estimator for the total correlation, a parameter that plays a critical role in graph matchability and graph matching runtime complexity.
翻译:对顶端对比图的推论具有广泛的理论和实践重要性。然而,对于相关图表,几乎没有多少灵活和可移动的统计模型,更没有多少关于此类图表产生的数据参数推论的全面方法。在本文中,我们考虑了相关的伯努利随机图形模型(为不同的脊椎配以不同的伯努利系数和边缘相关性),我们引入了新的减少差异技术(称为 emph{balance}),可以改进模型参数的估测器。具体地说,我们构建了一个差异统计,并表明它是完整和充分的;平衡可以被解释为与这种差异统计的拉-黑水利化。我们证明,对于对模型参数功能的公正估计,平衡产生统一的最低差异的不偏差估计值(UMVUEUS),我们考虑的是,即使对模型参数的不偏袒性估计器确实存在,但正如我们所证明的那样,对于差异性相关性和总体关联性参数来说,这都是非常有用的;平衡仍然是有用的,而且对于这种差异性的总的平方比度的比度,我们特别地展示了模型的比值的比值的比对准性,我们如何平衡了一个关键的比度的比重。我们证明,我们如何平衡了图表的比对准性能的比对准性能。