Motivated by the Acute Respiratory Distress Syndrome Network (ARDSNetwork) ARDS respiratory management (ARMA) trial, we developed a flexible Bayesian machine learning approach to estimate the average causal effect and heterogeneous causal effects among the always-survivors stratum when clinical outcomes are subject to truncation. We adopted Bayesian additive regression trees (BART) to flexibly specify separate models for the potential outcomes and latent strata membership. In the analysis of the ARMA trial, we found that the low tidal volume treatment had an overall benefit for participants sustaining acute lung injuries on the outcome of time to returning home, but substantial heterogeneity in treatment effects among the always-survivors, driven most strongly by sex and the alveolar-arterial oxygen gradient at baseline (a physiologic measure of lung function and source of hypoxemia). These findings illustrate how the proposed methodology could guide the prognostic enrichment of future trials in the field. We also demonstrated through a simulation study that our proposed Bayesian machine learning approach outperforms other parametric methods in reducing the estimation bias in both the average causal effect and heterogeneous causal effects for always-survivors.
翻译:在急性呼吸困难综合症网络(ARDSNetwork)ARDS呼吸管理试验的推动下,我们开发了一种灵活的巴伊西亚机器学习方法,在临床结果出现缺省时,估计总幸存者之间的平均因果效应和各种因果效应;我们采用了巴伊西亚添加性回归树(BART),灵活地为潜在结果和潜在阶层成员分别确定不同的模型;在分析ARMA试验时,我们发现低潮量治疗对患有急性肺损伤的参与者在返家时间方面总有好处,但在治疗效果方面,始终幸存者之间的严重异质性,其驱动力主要是性别和基底的阿尔维-阿尔-阿尔-阿尔-阿尔-阿尔-阿尔-阿尔-奥氏氧梯度(肺功能的物理测量和低氧症源),这些结果说明拟议方法如何指导未来实地试验的预测性浓缩;我们还通过模拟研究,表明,我们提议的巴伊西亚机器学习方法在减少平均因果效应和常分性结果的估计性结果方面,优于其他参数方法。