Folding garments reliably and efficiently is a long standing challenge in robotic manipulation due to the complex dynamics and high dimensional configuration space of garments. An intuitive approach is to initially manipulate the garment to a canonical smooth configuration before folding. In this work, we develop SpeedFolding, a reliable and efficient bimanual system, which given user-defined instructions as folding lines, manipulates an initially crumpled garment to (1) a smoothed and (2) a folded configuration. Our primary contribution is a novel neural network architecture that is able to predict pairs of gripper poses to parameterize a diverse set of bimanual action primitives. After learning from 4300 human-annotated and self-supervised actions, the robot is able to fold garments from a random initial configuration in under 120s on average with a success rate of 93%. Real-world experiments show that the system is able to generalize to unseen garments of different color, shape, and stiffness. While prior work achieved 3-6 Folds Per Hour (FPH), SpeedFolding achieves 30-40 FPH.
翻译:可靠和高效的折叠服装是机器人操作的长期挑战,因为服装的动态复杂和高维配置空间复杂。 一种直观的方法是在折叠前先将服装操纵成一个金刚石般的平滑配置。 在这项工作中,我们开发了“快速折叠”系统,这是一个可靠和高效的双体造型系统,它以折叠线为用户定义的指示,将最初的折叠服装操纵为:(1) 平滑和(2) 折叠配置。我们的主要贡献是一个新的神经网络结构,它能够预测一对握手姿势的组合,以对一套不同的双体行动原始生物进行参数化。在学习了4300个人注解和自我监督的动作后,机器人能够从平均120年代以下的随机初始配置中折叠成衣服,成功率为93%。 真实世界实验显示,这个系统能够将不同颜色、形状和坚硬度的隐形成衣。 之前的工作已经完成了3-6 Folds Per Hour(FFFPHH), 快速折叠成30- 40 FPH。