We present a new approach to unsupervised shape correspondence learning between pairs of point clouds. We make the first attempt to adapt the classical locally linear embedding algorithm (LLE) -- originally designed for nonlinear dimensionality reduction -- for shape correspondence. The key idea is to find dense correspondences between shapes by first obtaining high-dimensional neighborhood-preserving embeddings of low-dimensional point clouds and subsequently aligning the source and target embeddings using locally linear transformations. We demonstrate that learning the embedding using a new LLE-inspired point cloud reconstruction objective results in accurate shape correspondences. More specifically, the approach comprises an end-to-end learnable framework of extracting high-dimensional neighborhood-preserving embeddings, estimating locally linear transformations in the embedding space, and reconstructing shapes via divergence measure-based alignment of probabilistic density functions built over reconstructed and target shapes. Our approach enforces embeddings of shapes in correspondence to lie in the same universal/canonical embedding space, which eventually helps regularize the learning process and leads to a simple nearest neighbors approach between shape embeddings for finding reliable correspondences. Comprehensive experiments show that the new method makes noticeable improvements over state-of-the-art approaches on standard shape correspondence benchmark datasets covering both human and nonhuman shapes.
翻译:我们展示了一种新的方法, 用来在两对点云之间进行不受监督的对应学习。 我们第一次尝试将经典的本地线性嵌入算法(LLE)(LLE)(LLE)(原设计用于非线性维度缩小)用于形状对应。 关键的想法是首先通过获得高维的低维区际隐蔽云, 并随后利用本地线性变换来对源和目标嵌入进行匹配, 从而找到一种不受监督的对等方式。 我们展示了使用新的 LLLE 启发的点云重建目标进行嵌入的学习, 其结果就是准确的形状。 更具体地说, 这种方法包括一个从终端到终端的可学习框架, 提取高维度邻域保存嵌入式嵌入式嵌入式, 估计嵌入空间中的本地线性变换, 以及通过在重建后的和目标形状上构建的概率性密度功能校准的密度功能来重建形状的形状。 我们的方法是将各种形状嵌入于同一的通用/ / 固性嵌入空间, 最终帮助校正学习过程, 并导致一个超越近邻方方法, 在定位的嵌入式嵌入方式之间, 在定位中, 在定位中, 以找到可靠的的嵌入式的嵌入式的嵌入式的图像中, 覆盖在隐藏式的形状上, 并覆盖在隐藏式的形状的形状上, 的形状上式的形状的形状上,, 的形状上, 以清晰式式式式式的形状上, 和式实验式实验式实验式实验性地,, 显示在人类式的模型, 显示在可辨制式的模型,, 显示在可辨制式式式式式的形状上,, 显示在人类制式的形状上, 的形状上, 和制式的形状上, 的形状上, 的形状上式实验性实验显示在人类式的形状上, 和人类的形状上, 和人类式实验显示为可辨制式的形状的形状的形状的形状的形状上, 制式的形状上, 的形状的形状的形状的形状的形状的形状的形状的形状上, 显示在人类式式式式的形状的