We introduce Breaking Bad, a large-scale dataset of fractured objects. Our dataset consists of over one million fractured objects simulated from ten thousand base models. The fracture simulation is powered by a recent physically based algorithm that efficiently generates a variety of fracture modes of an object. Existing shape assembly datasets decompose objects according to semantically meaningful parts, effectively modeling the construction process. In contrast, Breaking Bad models the destruction process of how a geometric object naturally breaks into fragments. Our dataset serves as a benchmark that enables the study of fractured object reassembly and presents new challenges for geometric shape understanding. We analyze our dataset with several geometry measurements and benchmark three state-of-the-art shape assembly deep learning methods under various settings. Extensive experimental results demonstrate the difficulty of our dataset, calling on future research in model designs specifically for the geometric shape assembly task. We host our dataset at https://breaking-bad-dataset.github.io/.
翻译:我们引入了“断裂坏”这个大型的断裂天体数据集。 我们的数据集由从万个基模模拟的100多万个断裂天体组成。 断裂模拟由最近基于物理的算法驱动, 有效地生成了各种物体的断裂模式。 现有的形状组装数据集按照具有语义意义的部件分解物体, 有效地建模过程。 相反, 破坏模型是几何天体如何自然破碎成碎片的销毁过程。 我们的数据集作为基准, 使得能够对断裂天体进行重新组装研究, 并对几何形状理解提出了新的挑战。 我们用几种几何测量测量法分析我们的数据集, 并参照三种最先进的形状组装深度学习方法, 广泛的实验结果显示了我们数据集的难度, 具体要求今后对模型设计进行研究, 具体用于几何形状组装组装任务。 我们的数据集设在 https://breborbad- dataset.github.io/ 。