For any positive integer $q\geq 2$ and any real number $\delta\in(0,1)$, let $\alpha_q(n,\delta n)$ denote the maximum size of a subset of $\mathbb{Z}_q^n$ with minimum Hamming distance at least $\delta n$, where $\mathbb{Z}_q=\{0,1,\dotsc,q-1\}$ and $n\in\mathbb{N}$. The asymptotic rate function is defined by $ R_q(\delta) = \limsup_{n\rightarrow\infty}\frac{1}{n}\log_q\alpha_q(n,\delta n). $ The famous $q$-ary asymptotic Gilbert-Varshamov bound, obtained in the 1950s, states that \[ R_q(\delta) \geq 1 - \delta\log_q(q-1)-\delta\log_q\frac{1}{\delta}-(1-\delta)\log_q\frac{1}{1-\delta} \stackrel{\mathrm{def}}{=}R_\mathrm{GV}(\delta,q) \] for all positive integers $q\geq 2$ and $0<\delta<1-q^{-1}$. In the case that $q$ is an even power of a prime with $q\geq 49$, the $q$-ary Gilbert-Varshamov bound was firstly improved by using algebraic geometry codes in the works of Tsfasman, Vladut, and Zink and of Ihara in the 1980s. The further investigation in algebraic geometry codes has shown that the $q$-ary Gilbert-Varshamov bound can also be improved in the case that $q$ is an odd power of a prime but not a prime with $q > 125$. However, it remains a long-standing open problem whether the $q$-ary Gilbert-Varshamov bound would be tight for those infinitely many integers $q$ which is a prime, except for Fermat primes not less than 257, and which is a generic positive integer not being a prime power. In this paper, we prove that the $q$-ary Gilbert-Varshamov bound can be improved for all but finitely many positive integers $q\geq 2$. It is shown that $ R_q(1/2) > R_\mathrm{GV}(1/2,q) $ for all integers $q > \exp(29)$. Furthermore, we show that the growth of the rate function $R_q(\delta)$ for $\delta\in(0,1)$ fixed and $q$ growing large has a nontrivial lower bound. These new lower bounds are achieved by using codes from geometry of numbers introduced by Lenstra in the 1980s.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【ACL2020】多模态信息抽取,365页ppt
专知会员服务
147+阅读 · 2020年7月6日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
30+阅读 · 2019年10月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
73+阅读 · 2016年11月26日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年4月24日
Arxiv
0+阅读 · 2024年4月22日
VIP会员
相关资讯
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
73+阅读 · 2016年11月26日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员