We develop a rapid and accurate contour method for the solution of time-fractional PDEs. The method inverts the Laplace transform via an optimised stable quadrature rule, suitable for infinite-dimensional operators, whose error decreases like $\exp(-cN/\log(N))$ for $N$ quadrature points. The method is parallisable, avoids having to resolve singularities of the solution as $t\downarrow 0$, and avoids the large memory consumption that can be a challenge for time-stepping methods applied to time-fractional PDEs. The ODEs resulting from quadrature are solved using adaptive sparse spectral methods that converge exponentially with optimal linear complexity. These solutions of ODEs are reused for different times. We provide a complete analysis of our approach for fractional beam equations used to model small-amplitude vibration of viscoelastic materials with a fractional Kelvin-Voigt stress-strain relationship. We calculate the system's energy evolution over time and the surface deformation in cases of both constant and non-constant viscoelastic parameters. An infinite-dimensional ``solve-then-discretise'' approach considerably simplifies the analysis, which studies the generalisation of the numerical range of a quasi-linearisation of a suitable operator pencil. This allows us to build an efficient algorithm with explicit error control. The approach can be readily adapted to other time-fractional PDEs and is not constrained to fractional parameters in the range $0<\nu<1$.
翻译:我们开发了一种快速和准确的解析时间折射 PDE 的解析方法。 这种方法通过优化稳定的二次曲线规则, 将 Laplace 转换为适合无限尺寸操作员, 其错误会减少, 比如$\ exp (- cN/\log( N) $N$), 用于 $N 的二次曲线点。 这种方法是可想象的, 避免了解析解决方案的奇特性为$t\ down 0. 美元, 避免了大量内存消耗, 这对时间折射参数应用到时间折射 PDE 。 以适应性稀释的光谱方法解决了 。 使用适应性稀释的光谱法方法, 与最佳线性线性线性操作员相趋一致。 运行器的轨迹模型用于微缩缩缩缩缩图式振动, 用于模拟微缩略式 Kelvin- Voigt 压力-strain 关系。 我们计算系统在时间折射线上和不固定的直线直径直径直径直径分析中, 直径直径直径直径直径直径直径的轨分析, 。