In this paper, we propose a deep learning based reduced order modeling method for stochastic underground flow problems in highly heterogeneous media. We aim to utilize supervised learning to build a reduced surrogate model from the stochastic parameter space that characterizes the possible highly heterogeneous media to the solution space of a stochastic flow problem to have fast online simulations. Dominant POD modes obtained from a well-designed spectral problem in a global snapshot space are used to represent the solution of the flow problem. Due to the small dimension of the solution, the complexity of the neural network is significantly reduced. We adopt the generalized multiscale finite element method (GMsFEM), in which a set of local multiscale basis functions that can capture the heterogeneity of the media and source information are constructed to efficiently generate globally defined snapshot space. Rigorous theoretical analyses are provided and extensive numerical experiments for linear and nonlinear stochastic flows are provided to verify the superior performance of the proposed method.


翻译:在本文中,我们提出了一种基于深层次学习的减少顺序模型方法,用于处理高度多样化媒体的随机地下流动问题。我们的目标是利用监督的学习,从随机参数空间建立一种减少的替代模型,该模型的特征是可能的高度多样化媒体,到解决随机流动问题的空间,以便进行快速在线模拟。从全球快照空间设计良好的光谱问题中获取的多功能POD模式被用来代表流动问题的解决方案。由于解决方案的细小层面,神经网络的复杂性大大降低。我们采用了通用的多尺度有限元素方法(GMSFEM),在这种方法中,构建了一套可捕捉到媒体和源信息异质的多尺度局部功能,以便有效地生成全球界定的快照空间。提供了严格的理论分析,并为线性和非线性随机流动提供了广泛的数字实验,以核实拟议方法的优异性。

0
下载
关闭预览

相关内容

专知会员服务
42+阅读 · 2020年12月18日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
MIT-深度学习Deep Learning State of the Art in 2020,87页ppt
专知会员服务
61+阅读 · 2020年2月17日
【新书】贝叶斯网络进展与新应用,附全书下载
专知会员服务
120+阅读 · 2019年12月9日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2022年1月28日
Arxiv
0+阅读 · 2022年1月25日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员