We present a novel approach to test for heteroscedasticity of a non-stationary time series that is based on Gini's mean difference of logarithmic local sample variances. In order to analyse the large sample behaviour of our test statistic, we establish new limit theorems for U-statistics of dependent triangular arrays. We derive the asymptotic distribution of the test statistic under the null hypothesis of a constant variance and show that the test is consistent against a large class of alternatives, including multiple structural breaks in the variance. Our test is applicable even in the case of non-stationary processes, assuming a locally stationary mean function. The performance of the test and its comparatively low computation time are illustrated in an extensive simulation study. As an application, we analyse Google Trends data, monitoring the relative search interest for the topic "global warming."
翻译:我们提出一种新的方法来测试非静止时间序列的杂交性,该方法基于基尼对本地抽样差异的平均值差异。为了分析我们测试统计数据的大量抽样行为,我们为依赖三角阵列的U-统计性制定了新的限制理论。我们在不变差异的无效假设下得出测试统计数据的无症状分布,并表明测试与一大批替代数据一致,包括差异中的多重结构断裂。我们的测试甚至适用于非静止过程,假设局部固定平均功能。测试的性能及其相对较低的计算时间在广泛的模拟研究中加以说明。作为一种应用,我们分析谷歌趋势数据,监测“全球变暖”专题的相对搜索兴趣。