We present a novel approach to test for heteroscedasticity of a non-stationary time series that is based on Gini's mean difference of logarithmic local sample variances. In order to analyse the large sample behaviour of our test statistic, we establish new limit theorems for U-statistics of dependent triangular arrays. We derive the asymptotic distribution of the test statistic under the null hypothesis of a constant variance and show that the test is consistent against a large class of alternatives, including multiple structural breaks in the variance. Our test is applicable even in the case of non-stationary processes, assuming a locally stationary mean function. The performance of the test and its comparatively low computation time are illustrated in an extensive simulation study. As an application, we analyse Google Trends data, monitoring the relative search interest for the topic "global warming."


翻译:我们提出一种新的方法来测试非静止时间序列的杂交性,该方法基于基尼对本地抽样差异的平均值差异。为了分析我们测试统计数据的大量抽样行为,我们为依赖三角阵列的U-统计性制定了新的限制理论。我们在不变差异的无效假设下得出测试统计数据的无症状分布,并表明测试与一大批替代数据一致,包括差异中的多重结构断裂。我们的测试甚至适用于非静止过程,假设局部固定平均功能。测试的性能及其相对较低的计算时间在广泛的模拟研究中加以说明。作为一种应用,我们分析谷歌趋势数据,监测“全球变暖”专题的相对搜索兴趣。

0
下载
关闭预览

相关内容

专知会员服务
31+阅读 · 2021年6月12日
专知会员服务
41+阅读 · 2021年4月2日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
已删除
将门创投
5+阅读 · 2018年1月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年7月7日
Arxiv
3+阅读 · 2014年10月9日
VIP会员
相关VIP内容
专知会员服务
31+阅读 · 2021年6月12日
专知会员服务
41+阅读 · 2021年4月2日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
已删除
将门创投
5+阅读 · 2018年1月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员