A classical result in learning theory shows the equivalence of PAC learnability of binary hypothesis classes and the finiteness of VC dimension. Extending this to the multiclass setting was an open problem, which was settled in a recent breakthrough result characterizing multiclass PAC learnability via the DS dimension introduced earlier by Daniely and Shalev-Shwartz. In this work we consider list PAC learning where the goal is to output a list of $k$ predictions. List learning algorithms have been developed in several settings before and indeed, list learning played an important role in the recent characterization of multiclass learnability. In this work we ask: when is it possible to $k$-list learn a hypothesis class? We completely characterize $k$-list learnability in terms of a generalization of DS dimension that we call the $k$-DS dimension. Generalizing the recent characterization of multiclass learnability, we show that a hypothesis class is $k$-list learnable if and only if the $k$-DS dimension is finite.
翻译:典型的学习理论结果显示PAC的二进制假设类的可学性和VC的有限性等同。 将此推广到多级背景是一个公开的问题, 这个问题在最近的一项突破性结果中得到了解决, 该突破性结果通过Daniely和Shalev-Shwartz 早些时候推出的DS 级的多级PAC 可学性, 我们在此工作中考虑将PAC 的学习列表列出, 目标是输出一个美元预测清单。 列表的学习算法在之前和实际上在若干场合中已经开发, 列表的学习算法在最近多级可学的特点中发挥了重要作用 。 在这项工作中, 我们问 : $-k$ 列表何时可能学习一个假设类? 我们完全将$- k$- DS 级的可学性定性为我们称之为 $k$- DS 级的通用的DS 级。 概括最近对多级可学性的定性, 我们显示假设类的可学性是$-k$- DS 维度的可学性, 如果并且只有$- DS 有限性, 。