Approximately 1.25 million people in the United States are treated each year for burn injuries. Precise burn injury classification is an important aspect of the medical AI field. In this work, we propose an explainable human-in-the-loop framework for improving burn ultrasound classification models. Our framework leverages an explanation system based on the LIME classification explainer to corroborate and integrate a burn expert's knowledge -- suggesting new features and ensuring the validity of the model. Using this framework, we discover that B-mode ultrasound classifiers can be enhanced by supplying textural features. More specifically, we confirm that texture features based on the Gray Level Co-occurance Matrix (GLCM) of ultrasound frames can increase the accuracy of transfer learned burn depth classifiers. We test our hypothesis on real data from porcine subjects. We show improvements in the accuracy of burn depth classification -- from ~88% to ~94% -- once modified according to our framework.
翻译:美国每年大约有125万人因烧伤而接受治疗。精确的烧伤分类是医疗AI领域的一个重要方面。在这个工作中,我们提议了一个可以解释的人体在圈内改善烧伤超声波分类模型的框架。我们的框架利用一个基于LIME分类解释器的解释系统来证实和整合烧伤专家的知识 -- -- 提出新的特征并确保模型的有效性。我们利用这个框架发现,通过提供质谱特征,B-mode超声波分类器可以得到加强。更具体地说,我们确认,基于超声波框架的灰度共同安全矩阵(GLCM)的质谱特征可以提高转移所学的燃烧深度分类器的准确性。我们测试了我们从浮游生物主体获得的真实数据的假设。我们显示了燃烧深度分类的准确性 -- -- 从~88%到~94% -- -- 一旦根据我们的框架作了修改,我们显示了燃烧深度分类的准确性 -- -- 从~88%到~94% -- -- -- 有了改进。