We give the first polynomial-time algorithm for the testable learning of halfspaces in the presence of adversarial label noise under the Gaussian distribution. In the recently introduced testable learning model, one is required to produce a tester-learner such that if the data passes the tester, then one can trust the output of the robust learner on the data. Our tester-learner runs in time $\poly(d/\eps)$ and outputs a halfspace with misclassification error $O(\opt)+\eps$, where $\opt$ is the 0-1 error of the best fitting halfspace. At a technical level, our algorithm employs an iterative soft localization technique enhanced with appropriate testers to ensure that the data distribution is sufficiently similar to a Gaussian.
翻译:在高山分布下,我们给出了第一个测试半空空间可测试学习的多元时间算法。 在最近推出的可测试的学习模型中,需要一种方法来生成测试者- 取精器,这样,如果数据通过测试器,那么人们就可以信任数据上强健的学习者的产出。我们的测试者- 取精器运行时间为$\poly(d/\eps)$(d/\eps) $(obly) / eps ), 并输出一个错误分类错误为$O(o( opt) <unk> ps $( $) $( opt) / eps $( $) 的半空格, 最佳匹配半空格为 0-1 错误 。 在技术层面上, 我们的算法使用一种迭代软本地化技术, 由适当的测试者强化, 以确保数据分布与高斯人非常相似 。</s>