Adversarial examples have shown a powerful ability to make a well-trained model misclassified. Current mainstream adversarial attack methods only consider one of the distortions among $L_0$-norm, $L_2$-norm, and $L_\infty$-norm. $L_0$-norm based methods cause large modification on a single pixel, resulting in naked-eye visible detection, while $L_2$-norm and $L_\infty$-norm based methods suffer from weak robustness against adversarial defense since they always diffuse tiny perturbations to all pixels. A more realistic adversarial perturbation should be sparse and imperceptible. In this paper, we propose a novel $L_p$-norm distortion-efficient adversarial attack, which not only owns the least $L_2$-norm loss but also significantly reduces the $L_0$-norm distortion. To this aim, we design a new optimization scheme, which first optimizes an initial adversarial perturbation under $L_2$-norm constraint, and then constructs a dimension unimportance matrix for the initial perturbation. Such a dimension unimportance matrix can indicate the adversarial unimportance of each dimension of the initial perturbation. Furthermore, we introduce a new concept of adversarial threshold for the dimension unimportance matrix. The dimensions of the initial perturbation whose unimportance is higher than the threshold will be all set to zero, greatly decreasing the $L_0$-norm distortion. Experimental results on three benchmark datasets show that under the same query budget, the adversarial examples generated by our method have lower $L_0$-norm and $L_2$-norm distortion than the state-of-the-art. Especially for the MNIST dataset, our attack reduces 8.1$\%$ $L_2$-norm distortion meanwhile remaining 47$\%$ pixels unattacked. This demonstrates the superiority of the proposed method over its competitors in terms of adversarial robustness and visual imperceptibility.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
22+阅读 · 2023年11月2日
VIP会员
相关VIP内容
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员