Modern advanced manufacturing and advanced materials design often require searches of relatively high-dimensional process control parameter spaces for settings that result in optimal structure, property, and performance parameters. The mapping from the former to the latter must be determined from noisy experiments or from expensive simulations. We abstract this problem to a mathematical framework in which an unknown function from a control space to a design space must be ascertained by means of expensive noisy measurements, which locate optimal control settings generating desired design features within specified tolerances, with quantified uncertainty. We describe targeted adaptive design (TAD), a new algorithm that performs this optimal sampling task. TAD creates a Gaussian process surrogate model of the unknown mapping at each iterative stage, proposing a new batch of control settings to sample experimentally and optimizing the updated log-predictive likelihood of the target design. TAD either stops upon locating a solution with uncertainties that fit inside the tolerance box or uses a measure of expected future information to determine that the search space has been exhausted with no solution. TAD thus embodies the exploration-exploitation tension in a manner that recalls, but is essentially different from, Bayesian optimization and optimal experimental design.
翻译:现代先进制造材料和先进材料设计往往需要搜索相对高维的流程控制参数空间,以查找导致最佳结构、属性和性能参数的设置。从前者到后者的绘图必须从繁琐的实验或昂贵的模拟中确定。我们将这一问题抽象成一个数学框架,在这个框架中,一个未知的功能从控制空间到设计空间都必须通过昂贵的噪音测量来确定,这种测量将最佳的控制设置定位于特定的容度内,产生理想的设计特征,并具有量化的不确定性。我们描述了有针对性的适应性设计(TAD),这是一种执行这一最佳取样任务的新算法。TAD为每个迭代阶段的未知绘图创建了一个高斯过程替代模型,提出了一组新的控制设置,以对目标设计的最新逻辑预测可能性进行抽样和优化。TAD要么停止寻找一个在容积箱内具有不确定性的解决方案,要么使用预期的未来信息量度确定搜索空间已经用完,没有解决办法。TAD因此以回顾但基本上不同于Bayesian优化和最佳实验设计的方式体现了勘探-开发的紧张。