Expensive multi-objective optimization problems can be found in many real-world applications, where their objective function evaluations involve expensive computations or physical experiments. It is desirable to obtain an approximate Pareto front with a limited evaluation budget. Multi-objective Bayesian optimization (MOBO) has been widely used for finding a finite set of Pareto optimal solutions. However, it is well-known that the whole Pareto set is on a continuous manifold and can contain infinite solutions. The structural properties of the Pareto set are not well exploited in existing MOBO methods, and the finite-set approximation may not contain the most preferred solution(s) for decision-makers. This paper develops a novel learning-based method to approximate the whole Pareto set for MOBO, which generalizes the decomposition-based multi-objective optimization algorithm (MOEA/D) from finite populations to models. We design a simple and powerful acquisition search method based on the learned Pareto set, which naturally supports batch evaluation. In addition, with our proposed model, decision-makers can readily explore any trade-off area in the approximate Pareto set for flexible decision-making. This work represents the first attempt to model the Pareto set for expensive multi-objective optimization. Experimental results on different synthetic and real-world problems demonstrate the effectiveness of our proposed method.
翻译:在现实世界的许多应用中,可以发现昂贵的多目标优化问题,在这些应用中,其客观功能评价涉及昂贵的计算或物理实验。最好以有限的评价预算获得大致的Pareto前端。多目标巴伊西亚优化(MOBO)已被广泛用于寻找一套有限的Pareto最佳解决方案。然而,众所周知,整个Pareto集是在一个连续的多元体上,可以包含无限的解决方案。Pareto集的结构特性在现有的MOBO方法中没有得到很好的利用,而定额近似可能并不包含决策者最喜欢的解决方案。本文开发了一种基于学习的新方法,以接近整个Pareto集集为评价预算的全Pareto集(MOE/DO),该集将基于分层定位的多目标优化算法(MOEA/D)从有限的人口到模型加以推广。我们设计了一个简单有力的采购搜索方法,这自然支持批量评估。此外,我们提议的模型,决策者可以很容易地在接近Pareto的Pareto综合优化模型中先探索任何贸易领域,然后为灵活决策的模型设定。这个工作展示了我们关于灵活和综合优化的尝试的方法。这个方法,以展示了我们提出的不同的方法。这个方法。这个工作将展示了我们关于弹性的模型的实验性、实验性、实验性、实验性、实验性、实验性、实验性、实验性的方法。