We study the performance of Long Short-Term Memory networks for keystroke biometric authentication at large scale in free-text scenarios. For this we explore the performance of Long Short-Term Memory (LSTMs) networks trained with a moderate number of keystrokes per identity and evaluated under different scenarios including: i) three learning approaches depending on the loss function (softmax, contrastive, and triplet loss); ii) different number of training samples and lengths of keystroke sequences; iii) four databases based on two device types (physical vs touchscreen keyboard); and iv) comparison with existing approaches based on both traditional statistical methods and deep learning architectures. Our approach called TypeNet achieves state-of-the-art keystroke biometric authentication performance with an Equal Error Rate of 2.2% and 9.2% for physical and touchscreen keyboards, respectively, significantly outperforming previous approaches. Our experiments demonstrate a moderate increase in error with up to 100,000 subjects, demonstrating the potential of TypeNet to operate at an Internet scale. To the best of our knowledge, the databases used in this work are the largest existing free-text keystroke databases available for research with more than 136 million keystrokes from 168,000 subjects in physical keyboards, and 60,000 subjects with more than 63 million keystrokes acquired on mobile touchscreens.


翻译:我们研究了长期短期内存网络在自由文本情景下大规模键入生物鉴别认证的绩效。为此,我们探讨了长期短期内存(LSTMs)网络的绩效,这些网络每个身份有少量键入,并在不同的情景下进行评估,包括:(一) 三种取决于损失功能的学习方法(软模、对比和三重损失);(二) 不同数量的培训样本和键盘序列长度;(三) 四个基于两种设备类型的数据库(物理对触摸屏键盘键盘);以及(四) 与基于传统统计方法和深层学习结构的现有方法进行比较。我们称为TyNet的网络在物理和触摸屏键盘键盘键盘认证功能方面达到最新水平,分别为2.2%和9.2%,大大超过以往的方法。我们的实验显示,最多有100 000个主题的错误在适度增加,显示了在互联网规模上运行的TyNet的潜力。我们的最佳知识是,在这项工作中使用的数据库是目前最大的自由文本键盘键盘键盘键盘键盘键盘键盘数据库,在16万个触摸题上,超过获得的36万个以上的计算机键盘键盘数据库。

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
【CMU】最新深度学习课程, Introduction to Deep Learning
专知会员服务
37+阅读 · 2020年9月12日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
12+阅读 · 2018年4月27日
读论文Discriminative Deep Metric Learning for Face and KV
统计学习与视觉计算组
12+阅读 · 2018年4月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
LibRec 每周算法:Collaborative Metric Learning (WWW'17)
LibRec智能推荐
6+阅读 · 2017年7月4日
Asymmetrical Vertical Federated Learning
Arxiv
3+阅读 · 2020年6月11日
Arxiv
13+阅读 · 2019年1月26日
Arxiv
6+阅读 · 2018年12月10日
Arxiv
11+阅读 · 2018年7月31日
Arxiv
5+阅读 · 2018年1月14日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
12+阅读 · 2018年4月27日
读论文Discriminative Deep Metric Learning for Face and KV
统计学习与视觉计算组
12+阅读 · 2018年4月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
LibRec 每周算法:Collaborative Metric Learning (WWW'17)
LibRec智能推荐
6+阅读 · 2017年7月4日
相关论文
Asymmetrical Vertical Federated Learning
Arxiv
3+阅读 · 2020年6月11日
Arxiv
13+阅读 · 2019年1月26日
Arxiv
6+阅读 · 2018年12月10日
Arxiv
11+阅读 · 2018年7月31日
Arxiv
5+阅读 · 2018年1月14日
Top
微信扫码咨询专知VIP会员