We study the performance of Long Short-Term Memory networks for keystroke biometric authentication at large scale in free-text scenarios. For this we explore the performance of Long Short-Term Memory (LSTMs) networks trained with a moderate number of keystrokes per identity and evaluated under different scenarios including: i) three learning approaches depending on the loss function (softmax, contrastive, and triplet loss); ii) different number of training samples and lengths of keystroke sequences; iii) four databases based on two device types (physical vs touchscreen keyboard); and iv) comparison with existing approaches based on both traditional statistical methods and deep learning architectures. Our approach called TypeNet achieves state-of-the-art keystroke biometric authentication performance with an Equal Error Rate of 2.2% and 9.2% for physical and touchscreen keyboards, respectively, significantly outperforming previous approaches. Our experiments demonstrate a moderate increase in error with up to 100,000 subjects, demonstrating the potential of TypeNet to operate at an Internet scale. To the best of our knowledge, the databases used in this work are the largest existing free-text keystroke databases available for research with more than 136 million keystrokes from 168,000 subjects in physical keyboards, and 60,000 subjects with more than 63 million keystrokes acquired on mobile touchscreens.
翻译:我们研究了长期短期内存网络在自由文本情景下大规模键入生物鉴别认证的绩效。为此,我们探讨了长期短期内存(LSTMs)网络的绩效,这些网络每个身份有少量键入,并在不同的情景下进行评估,包括:(一) 三种取决于损失功能的学习方法(软模、对比和三重损失);(二) 不同数量的培训样本和键盘序列长度;(三) 四个基于两种设备类型的数据库(物理对触摸屏键盘键盘);以及(四) 与基于传统统计方法和深层学习结构的现有方法进行比较。我们称为TyNet的网络在物理和触摸屏键盘键盘键盘认证功能方面达到最新水平,分别为2.2%和9.2%,大大超过以往的方法。我们的实验显示,最多有100 000个主题的错误在适度增加,显示了在互联网规模上运行的TyNet的潜力。我们的最佳知识是,在这项工作中使用的数据库是目前最大的自由文本键盘键盘键盘键盘键盘键盘键盘数据库,在16万个触摸题上,超过获得的36万个以上的计算机键盘键盘数据库。