When analyzing large datasets, analysts are often interested in the explanations for surprising or unexpected results produced by their queries. In this work, we focus on aggregate SQL queries that expose correlations in the data. A major challenge that hinders the interpretation of such queries is confounding bias, which can lead to an unexpected correlation. We generate explanations in terms of a set of confounding variables that explain the unexpected correlation observed in a query. We propose to mine candidate confounding variables from external sources since, in many real-life scenarios, the explanations are not solely contained in the input data. We present an efficient algorithm that finds the optimal subset of attributes (mined from external sources and the input dataset) that explain the unexpected correlation. This algorithm is embodied in a system called MESA. We demonstrate experimentally over multiple real-life datasets and through a user study that our approach generates insightful explanations, outperforming existing methods that search for explanations only in the input data. We further demonstrate the robustness of our system to missing data and the ability of MESA to handle input datasets containing millions of tuples and an extensive search space of candidate confounding attributes.


翻译:在分析大型数据集时,分析员往往对解释其查询产生的意外或意外结果感兴趣。在这项工作中,我们侧重于揭示数据相关性的SQL汇总查询。妨碍解释这类查询的一个主要挑战是混淆的偏差,这可能导致出乎意料的关联。我们用一系列混淆的变量来解释在查询中观察到的意外关联。我们建议从外部来源中解析变量,因为在许多现实生活中,解释并不完全包含在输入数据中。我们提出了一个有效的算法,找到最理想的属性(来自外部来源和输入数据集),解释出乎意料的关联。这个算法体现在一个名为 MESA 的系统中。我们通过实验性地展示了多个真实数据集,并通过用户研究,我们的方法产生了深刻的解释,超过了仅仅在输入数据中寻找解释的现有方法。我们进一步展示了我们系统对丢失数据的坚固性,以及MSA处理包含数百万个图案和广泛搜索候选人混结属性的输入数据集的能力。

0
下载
关闭预览

相关内容

NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
48+阅读 · 2022年10月2日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
26+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年11月10日
Arxiv
1+阅读 · 2022年11月9日
Directions for Explainable Knowledge-Enabled Systems
Arxiv
26+阅读 · 2020年3月17日
Arxiv
110+阅读 · 2020年2月5日
VIP会员
相关VIP内容
NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
48+阅读 · 2022年10月2日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
26+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员