Marking-level high-definition maps (HD maps) are of great significance for autonomous vehicles (AVs), especially in large-scale, appearance-changing scenarios where AVs rely on markings for localization and lanes for safe driving. In this paper, we propose a pose-guided optimization framework for automatically building a marking-level HD map with accurate markings positions using a simple sensor setup (one or more monocular cameras). We optimize the position of the marking corners to fit the result of marking segmentation and simultaneously optimize the inverse perspective mapping (IPM) matrix of the corresponding camera to obtain an accurate transformation from the front view image to the bird's-eye view (BEV). In the quantitative evaluation, the built HD map almost attains centimeter-level accuracy. The accuracy of the optimized IPM matrix is similar to that of the manual calibration. The method can also be generalized to build HD maps in a broader sense by increasing the types of recognizable markings. The supplementary materials and videos are available at http://liuhongji.site/V2HDM-Mono/.
翻译:标志性高清晰度地图(HD地图)对于自主车辆具有重大意义,特别是在大型的、表面变化的情景中,AV依赖定位标记和安全驾驶的车道。在本文件中,我们提出一个成形指导优化框架,用于利用简单的传感器设置(一个或一个以上的单眼照相机)自动建立带有准确标记位置的标志性高清晰度地图。我们优化标记角的位置,以适应标记分块的结果,同时优化相应相机的反视角绘图矩阵,以便从前视图像到鸟眼视图(BEV)取得准确的转换。在定量评估中,所建的HD地图几乎达到厘米的准确度。最佳的IPM矩阵的准确性与手动校准相似。还可推广方法,通过增加可识别标记的类型,在更广的范围内建立HD地图。补充材料和视频见http://liuhongji.site/V2HDM-M-Mono/。</s>