The transition from non-renewable to renewable energies represents a global societal challenge, and developing a sustainable energy portfolio is an especially daunting task for developing countries where little to no information is available regarding the abundance of renewable resources such as wind. Weather model simulations are key to obtain such information when observational data are scarce and sparse over a country as large and geographically diverse as Saudi Arabia. However, output from such models is uncertain, as it depends on inputs such as the parametrization of the physical processes and the spatial resolution of the simulated domain. In such situations, a sensitivity analysis must be performed and the input may have a spatially heterogeneous influence of wind. In this work, we propose a latent Gaussian functional analysis of variance (ANOVA) model that relies on a nonstationary Gaussian Markov random field approximation of a continuous latent process. The proposed approach is able to capture the local sensitivity of Gaussian and non-Gaussian wind characteristics such as speed and threshold exceedances over a large simulation domain, and a continuous underlying process also allows us to assess the effect of different spatial resolutions. Our results indicate that (1) the non-local planetary boundary layer schemes and high spatial resolution are both instrumental in capturing wind speed and energy (especially over complex mountainous terrain), and (2) their impact on the energy output of Saudi Arabia's planned wind farms is small (at most 1.4%). Thus, our results lend support for the construction of these wind farms in the next decade.
翻译:从不可再生的能源向可再生能源的过渡是一项全球社会挑战,而开发可持续能源组合对于发展中国家来说是一项特别艰巨的任务,因为这些国家在风等可再生资源丰富方面几乎没有或根本没有信息。天气模型模拟是获取此类信息的关键。当观察数据在沙特阿拉伯这样庞大和地理多样的国家中稀少和稀少时,天气模型是获得此类信息的关键。然而,这些模型的产出并不确定,因为它取决于物理过程的平衡和模拟域的空间分辨率等投入。在这种情况下,必须进行敏感度分析,投入可能具有不同空间的风力影响。在这项工作中,我们提议对差异(ANOVA)进行潜在的高斯功能分析,这种分析依赖非静止的高斯马可夫随机实地接近持续潜在进程的模式。提议的方法能够捕捉高斯风和非撒风力特性的当地敏感性,例如速度和门槛超过大型模拟域。在这种情况下,持续的基础进程也使我们能够评估不同空间分辨率的影响。我们提出的一个潜在高山体功能分析模型(ANOVA),该模型依赖于非静止高地高地高地的Gaslimal-listrual strual strual strual strual strual strual strual strual sal sal sal sal sal sal sal sal sal sal sal sal sal resmal resmal resmal ress res系计划, ress lautal resm laps the sal ress sal ress ress ress sal ress lautal lautal lautal lautal sal sal sal sal res ress res ress ress ress lautal sal sal sal sal sal sal sal sal sal sal sal sal sal sal sal sal sal sal sal sal sal sal sal res resmal resmal sal sal sal sal sal sal sal sal sal sal sal sal sal sal sal res res resmal sal sal resmal resmal resmal resmal sal resmal sal