We present HeadText, a hands-free technique on a smart earpiece for text entry by motion sensing. Users input text utilizing only 7 head gestures for key selection, word selection, word commitment and word cancelling tasks. Head gesture recognition is supported by motion sensing on a smart earpiece to capture head moving signals and machine learning algorithms (K-Nearest-Neighbor (KNN) with a Dynamic Time Warping (DTW) distance measurement). A 10-participant user study proved that HeadText could recognize 7 head gestures at an accuracy of 94.29%. After that, the second user study presented that HeadText could achieve a maximum accuracy of 10.65 WPM and an average accuracy of 9.84 WPM for text entry. Finally, we demonstrate potential applications of HeadText in hands-free scenarios for (a). text entry of people with motor impairments, (b). private text entry, and (c). socially acceptable text entry.
翻译:我们用运动感应器在智能耳机上展示了“头耳机”技术,用于文字输入。用户输入文本仅使用7个头部手势,用于关键选择、单词选择、字承诺和取消字词的任务。在智能耳机上运动感应支持头耳机识别,以捕捉头动信号和机器学习算法(K-Nearest-Nighbor(K-NNN),具有动态时间扭曲(DTW)距离测量)。10个参与者用户研究证明,头耳机可以识别7个头部手势,精确度为94.29%。此后,第二次用户研究显示,头耳机可以实现10.65 WPM的最大精确度,文本条目的平均精确度为9.84 WPM。最后,我们展示了头耳机在无手电图情景中的潜在应用,用于(a) 运动障碍者的文字输入,(b) 私人文字输入,以及(c) 社会可接受的文字输入。