Electric Vehicles (EVs) can help alleviate our reliance on fossil fuels for transport and electricity systems. However, charging millions of EV batteries requires management to prevent overloading the electricity grid and minimise costly upgrades that are ultimately paid for by consumers. Managed chargers, such as Vehicle-to-Grid (V2G) chargers, allow control over the time, speed and direction of charging. Such control assists in balancing electricity supply and demand across a green electricity system and could reduce costs for consumers. Smart and V2G chargers connect EVs to the power grid using a charging device which includes a data connection to exchange information and control commands between various entities in the EV ecosystem. This introduces data privacy concerns and is a potential target for cyber-security attacks. Therefore, the implementation of a secure system is crucial to permit both consumers and electricity system operators to trust smart charging and V2G. In principle, we already have the technology needed for a connected EV charging infrastructure to be securely enabled, borrowing best practices from the Internet and industrial control systems. We must properly adapt the security technology to take into account the challenges peculiar to the EV charging infrastructure. Challenges go beyond technical considerations and other issues arise such as balancing trade-offs between security and other desirable qualities such as interoperability, scalability, crypto-agility, affordability and energy efficiency. This document reviews security and privacy topics relevant to the EV charging ecosystem with a focus on smart charging and V2G.


翻译:电动车辆(EV2G)可以帮助减轻我们对运输和电力系统化石燃料的依赖。然而,对数百万EV电池的收费需要管理,以防止电网超负荷,并尽量减少最终由消费者支付的昂贵升级费用。车辆到Grid(V2G)充电器等管理充电器可以控制时间、速度和收费方向。这种控制有助于平衡电力供应和绿色电力系统的需求,并降低消费者的成本。智能和V2G充电器将EV连接到电网。智能和V2G充电器设备需要使用一个充电器设备,其中包括数据连接,以交换EV生态系统不同实体之间的信息和控制指令。这引起了数据隐私问题,是网络安全攻击的潜在目标。因此,实施安全系统对于消费者和电力系统操作者都能够信任智能充电和V2G。 原则上,我们已经具备了连接EV收费基础设施所需的技术,以便安全地实现能力,从互联网和工业控制系统借用最佳做法。我们必须适当调整安全技术,以考虑到EVEV指控基础设施的挑战。 安全性、安全性、安全性等挑战超越了安全性、安全性、可承受性、安全性等议题。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年8月23日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
VIP会员
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员