Wireless sensor networks (WSN) are widely used in vehicular networks to support Vehicle-to-Everything (V2X) communications. Wireless sensors in vehicular networks support sensing and monitoring of various environmental factors and vehicle movement, which can help to enhance traffic management, road safety, and transportation efficiency. However, WSNs face security challenges due to their distributed nature and resource limited modules. In Sybil attacks, attackers create multiple fake identities to disrupt network operations (e.g., denial-of-service (DoS)), which is one of the major security concerns in WSNs. Defensive techniques have been proposed, which recently include a received signal strength indicator (RSSI) profiling scheme that improves the performance and is not affected by internal forgeable information. However, even this new RSSI based robust detection scheme was found to be vulnerable when Sybil attackers are mobile or intentionally manipulate their radio transmission power in addition to their device address. In this paper, a unique identification based trust path routing scheme (UITrust) is proposed, which uses the device's physically invariable unique identifiers and routing path trust level estimations to avoid power-controlled Sybil attacks, where the simulation results show the proposed scheme can provide a significant improvement compared to existing schemes.
翻译:暂无翻译