We propose to use the difference in natural parameters (DINA) to quantify the heterogeneous treatment effect for exponential family models, in contrast to the difference in means. Similarly we model the hazard ratios for the Cox model. For binary outcomes and survival times, DINA is both convenient and perhaps more practical for modeling the covariates' influences on the treatment effect. We introduce a DINA estimator that is insensitive to confounding and non-collapsibility issues, and allows practitioners to use powerful off-the-shelf machine learning tools for nuisance estimation. We use extensive simulations to demonstrate the efficacy of the proposed method with various response distributions and censoring mechanisms. We also apply the proposed method to the SPRINT dataset to estimate the heterogeneous treatment effect, demonstrate the method's robustness to nuisance estimation, and conduct a placebo evaluation.
翻译:我们建议使用自然参数差异(DINA)来量化指数式家庭模型的多种处理效果,与手段差异形成对比。同样,我们用Cox模型的危害比率做模型。对于二进制结果和生存时间,DINA对于共同变量对治疗效果的影响的模型来说既方便,也许更加实用。我们引入了DINA估算器,该估算器对混杂和非重叠问题不敏感,并允许从业人员使用强大的现成机器学习工具来进行骚扰估计。我们使用广泛的模拟,以各种响应分布和审查机制来展示拟议方法的功效。我们还将拟议方法应用于SPRINT数据集,以估计不同治疗效果,展示该方法对破坏估计的稳健性,并进行安慰剂评估。