Open-Set Domain Adaptation (OSDA) assumes that a target domain contains unknown classes, which are not discovered in a source domain. Existing domain adversarial learning methods are not suitable for OSDA because distribution matching with \textit{unknown} classes leads to the negative transfer. Previous OSDA methods have focused on matching the source and the target distribution by only utilizing \textit{known} classes. However, this \textit{known}-only matching may fail to learn the target-\textit{unknown} feature space. Therefore, we propose Unknown-Aware Domain Adversarial Learning (UADAL), which \textit{aligns} the source and the targe-\textit{known} distribution while simultaneously \textit{segregating} the target-\textit{unknown} distribution in the feature alignment procedure. We provide theoretical analyses on the optimized state of the proposed \textit{unknown-aware} feature alignment, so we can guarantee both \textit{alignment} and \textit{segregation} theoretically. Empirically, we evaluate UADAL on the benchmark datasets, which shows that UADAL outperforms other methods with better feature alignments by reporting the state-of-the-art performances.
翻译:开放- Set- 域适应 (OSDA) 假设目标域包含未知的类别, 且未在源域内发现 。 现有的域对抗性学习方法不适合 OSDA, 因为分布匹配\ textit{ 未知} 类会导致负转移。 先前的 OSDA 方法只使用 textit{ 已知} 类来匹配源和目标分布 。 但是, 这种只知道的匹配可能无法学习目标- textit{ 未知{ 未知} 特性校正空间 。 因此, 我们提议了 未知- Aware Domain Adversarial 学习 (UADAL), 这是\ textit{ ALign} 源和 trage- texteit{ 已知} 类的分布不合适, 因为它同时\ textitleitleitleitle{ { spolgend} 将目标- textitilitation 和 目标分布 。 我们提供了对拟议 最优化的状态的理论分析分析, 因此我们可以保证 将UAAADADAs 上的数据比其他的校正显示其他的校正的校准方法。