Open-Set Domain Adaptation (OSDA) assumes that a target domain contains unknown classes, which are not discovered in a source domain. Existing domain adversarial learning methods are not suitable for OSDA because distribution matching with \textit{unknown} classes leads to the negative transfer. Previous OSDA methods have focused on matching the source and the target distribution by only utilizing \textit{known} classes. However, this \textit{known}-only matching may fail to learn the target-\textit{unknown} feature space. Therefore, we propose Unknown-Aware Domain Adversarial Learning (UADAL), which \textit{aligns} the source and the targe-\textit{known} distribution while simultaneously \textit{segregating} the target-\textit{unknown} distribution in the feature alignment procedure. We provide theoretical analyses on the optimized state of the proposed \textit{unknown-aware} feature alignment, so we can guarantee both \textit{alignment} and \textit{segregation} theoretically. Empirically, we evaluate UADAL on the benchmark datasets, which shows that UADAL outperforms other methods with better feature alignments by reporting the state-of-the-art performances.


翻译:开放- Set- 域适应 (OSDA) 假设目标域包含未知的类别, 且未在源域内发现 。 现有的域对抗性学习方法不适合 OSDA, 因为分布匹配\ textit{ 未知} 类会导致负转移。 先前的 OSDA 方法只使用 textit{ 已知} 类来匹配源和目标分布 。 但是, 这种只知道的匹配可能无法学习目标- textit{ 未知{ 未知} 特性校正空间 。 因此, 我们提议了 未知- Aware Domain Adversarial 学习 (UADAL), 这是\ textit{ ALign} 源和 trage- texteit{ 已知} 类的分布不合适, 因为它同时\ textitleitleitleitle{ { spolgend} 将目标- textitilitation 和 目标分布 。 我们提供了对拟议 最优化的状态的理论分析分析, 因此我们可以保证 将UAAADADAs 上的数据比其他的校正显示其他的校正的校准方法。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
AdarGCN: Adaptive Aggregation GCN for Few-Shot Learning
VIP会员
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员