We analyze the problem of simultaneous support recovery and estimation of the coefficient vector ($\beta^*$) in a linear model with independent and identically distributed Normal errors. We apply the penalized least square estimator based on non-linear penalties of stochastic gates (STG) [YLNK20] to estimate the coefficients. Considering Gaussian design matrices we show that under reasonable conditions on dimension and sparsity of $\beta^*$ the STG based estimator converges to the true data generating coefficient vector and also detects its support set with high probability. We propose a new projection based algorithm for linear models setup to improve upon the existing STG estimator that was originally designed for general non-linear models. Our new procedure outperforms many classical estimators for support recovery in synthetic data analysis.


翻译:我们用独立且分布均匀的正常差错的线性模型分析同时支持回收和估计系数矢量( $\beta ⁇ $) 的问题。 我们使用基于对随机门( STG) [ YLNK20] 的非线性惩罚的受罚最低平方估计值来估计系数。 考虑到高斯设计矩阵, 我们显示在维度和聚度的合理条件下, 以 $\beta ⁇ $ 的 STG 为基础的估计值会和真正的数据生成系数矢量汇合, 并发现其支持值的概率很高。 我们为线性模型设置提出了一个新的基于预测的算法, 以改进现有的STG 估计值, 原为一般非线性模型设计。 我们的新程序超越了许多支持合成数据分析恢复的经典估计值。

0
下载
关闭预览

相关内容

专知会员服务
42+阅读 · 2020年12月18日
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
159+阅读 · 2020年1月16日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员