Topological data analysis (TDA) provides insight into data shape. The summaries obtained by these methods are principled global descriptions of multi-dimensional data whilst exhibiting stable properties such as robustness to deformation and noise. Such properties are desirable in deep learning pipelines but they are typically obtained using non-TDA strategies. This is partly caused by the difficulty of combining TDA constructs (e.g. barcode and persistence diagrams) with current deep learning algorithms. Fortunately, we are now witnessing a growth of deep learning applications embracing topologically-guided components. In this survey, we review the nascent field of topological deep learning by first revisiting the core concepts of TDA. We then explore how the use of TDA techniques has evolved over time to support deep learning frameworks, and how they can be integrated into different aspects of deep learning. Furthermore, we touch on TDA usage for analyzing existing deep models; deep topological analytics. Finally, we discuss the challenges and future prospects of topological deep learning.


翻译:地形数据分析(TDA)提供了对数据形状的洞察力。通过这些方法获得的摘要是对多维数据有原则的全球描述,同时表现出稳定的特性,如变形和噪音等。这些特性在深层学习管道中是可取的,但通常使用非TDA战略获得,部分原因是难以将TDA的构造(例如条形码和持久性图)与目前的深层学习算法结合起来。幸运的是,我们现在目睹了包含地形指导组成部分的深层学习应用程序的增长。在这次调查中,我们通过首先重新审视TDA的核心概念来审查新形成的地貌深层学习领域。然后我们探索如何随着时间的推移使用TDA技术来支持深层学习框架,以及如何将这些技术纳入深层学习的不同方面。此外,我们谈到了TDA用于分析现有深层模型的使用情况;深层的地形分析。最后,我们讨论了地形深层学习的挑战和未来前景。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
45+阅读 · 2022年9月19日
Arxiv
64+阅读 · 2021年6月18日
AutoML: A Survey of the State-of-the-Art
Arxiv
69+阅读 · 2019年8月14日
A Comprehensive Survey on Graph Neural Networks
Arxiv
13+阅读 · 2019年3月10日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员