Morphological atlases are an important tool in organismal studies, and modern high-throughput Computed Tomography (CT) facilities can produce hundreds of full-body high-resolution volumetric images of organisms. However, creating an atlas from these volumes requires accurate organ segmentation. In the last decade, machine learning approaches have achieved incredible results in image segmentation tasks, but they require large amounts of annotated data for training. In this paper, we propose a self-training framework for multi-organ segmentation in tomographic images of Medaka fish. We utilize the pseudo-labeled data from a pretrained Teacher model and adopt a Quality Classifier to refine the pseudo-labeled data. Then, we introduce a pixel-wise knowledge distillation method to prevent overfitting to the pseudo-labeled data and improve the segmentation performance. The experimental results demonstrate that our method improves mean Intersection over Union (IoU) by 5.9% on the full dataset and enables keeping the quality while using three times less markup.
翻译:现代高通量成像图集是生物学研究的一个重要工具,现代高通量图集(CT)设施可以生成数百个完整的生物体高分辨率体积图象。然而,从这些卷积中创建图集需要准确的器官分解。在过去十年中,机器学习方法在图像分解任务方面取得了令人难以置信的成果,但需要大量附加说明的数据来进行培训。在本文中,我们提议了一个多机体分解美达卡鱼的图象的自我培训框架。我们使用预先培训的教师模型的假标签数据,并采用质量分类来改进假标签数据。然后,我们引入了一种精密的知识蒸馏方法,以防止过度适应假标签数据,改善分解性性能。实验结果表明,我们的方法在全数据集上改进了中间分解的5.9%(IoU),并且能够保持质量,同时使用三倍的标记。</s>